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2.3b OLS in the GLRM.
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GLRM: the PRF

■ Recall: model with K explanatory variables:

Yt = β0 +β1X1t + · · ·+βKXKt +ut ,

Y = Xβ +u
(2)

is called GLRM.
■ Population Regression Function (PRF):

E(u) = 0� systematic part or PRF:

E(Yt) = β0 +β1X1t + · · ·+βKXKt

E(Y ) = Xβ

■ Interpretation of the coefficients:
◆ β0 = E(Yt |X1t = X2t = · · · = XKt = 0): Expected value of Yt when all explanatory

variables are equal to zero.

◆ βk =
∂E(Yt)

∂Xkt
� ΔE(Yt)

ΔXkt
, k = 1 . . .K: Increase in (expected) value Yt when

Xk ↑ one unit (c.p.).
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The Sample Regression Function (SRF)

■ Objective of GLRM: To obtain estimator β̂ = (β̂0, β̂1 . . . , β̂K)′ of unknown parameter
vector in (2).
β̂ � estimated model, fit or SRF:

Ŷt = β̂0 + β̂1X1t + · · ·+ β̂KXKt

Ŷ = X β̂

■ Notes:
◆ Disturbances in PRF:

ut = Yt −E(Yt) = Yt −β0 −β1X1t −·· ·−βKXKt

u = Y −E(Y ) = Y −Xβ

◆ Residuals in SRF:

ût = Yt − Ŷt = Yt − β̂0 − β̂1X1t −·· ·− β̂KXKt

û = Y − Ŷ = Y −X β̂

■ Residuals are to the SRF what disturbances are to the PRF.
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Estimation: OLS

■ apply Least-Squares fit to GLRM: Y = Xβ +u,
■ either in observation form:

min
β0...βK

T

∑
t=1

u2
t where ut = Yt −β0 −β1X1t −·· ·−βKXKt

■ or in matrix form:[
recall:

u′ =
(
u1,u2, . . . ,uT

)
u =

⎛⎜⎜⎜⎝
u1

u2

. . .

uT

⎞⎟⎟⎟⎠
so u′u = u2

1 +u2
2 + · · ·+u2

T = ∑T
t=1 u2

t

]
■ that is

min
β

u′u where u = Y −Xβ
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Note: vector derivatives
■ Let u = u(β ): derivs of cu and cu2 with respect to β :

∂
∂β

(cu) = c
∂u
∂β

and
∂

∂β
u2 = 2u

∂u
∂β

■ With vectors and matrices this is quite similar:

■ The derivative of the linear combination u′c
u′

(1×n)

c
(n×1)

( = ∑n
i=1 ciui, i.e. scalar!!)

with respect to β
(k×1)

is: ∂ (u′c)
∂β = ∂u′

∂β c

■ The derivative of the sum of squares u′u
u′

(1×n)

u
(n×1)

( = ∑n
i=1 u2

i , i.e. scalar!!)

with respect to β
(k×1)

is: ∂ (u′u)
∂β = 2 ∂u′

∂β u
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1st.o.c. in matrix form

min
β

(u′u) where u = Y −Xβ

First derivatives of SS u′u with respect to β :

∂u′u
∂β

= 2
∂u′

∂β
u

= 2
∂ (Y ′ −β ′X ′)

∂β
u

= −2X ′u

in the minimum:

1st.o.c.: X ′
(K+1×T )

û
(T ×1)

= 0K+1
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Estimation: Normal equations & LSE of β

Solving the 1st.o.c. we obtain the normal equations: X ′(Y −X β̂ ) = 0 ⇒

X ′Y
(K+1×1)

= X ′X
(K+1×K+1)

β̂
(K+1×1)

(3)

Whence premultiplying by (X ′X)−1 we obtain the OLS estimator:

β̂OLS = (X ′X)−1X ′Y
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Estimation: LSE of β (cont)

■ where X ′X is a [K+1×K+1] matrix: [recall X & Y? −→]

■

X ′X
(K+1×K+1)

=

⎡⎢⎢⎢⎣
T ∑X1t ∑X2t . . . ∑XKt

∑X1t ∑X2
1t ∑X1tX2t . . . ∑X1tXKt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∑XKt ∑XKtX1t ∑XKtX2t . . . ∑X2
Kt

⎤⎥⎥⎥⎦
■ and X ′Y and β̂ are [K+1×1] vectors:

X ′Y
(K+1×1)

=

⎡⎢⎢⎢⎣
∑Yt

∑X1tYt

. . .

∑XKtYt

⎤⎥⎥⎥⎦ β̂
(K+1×1)

=

⎡⎢⎢⎢⎣
β̂0

β̂1

. . .

β̂K

⎤⎥⎥⎥⎦



c©J Fernández (EA3-UPV/EHU), February 21, 2009 Introductory Econometrics - p. 69/192

OLS estimator with centred (demeaned) data

An alternative way to obtain the OLS estimator is

β̂ �
OLS = (x′x)−1x′y

for the model coefficients.

. . . together with the estimated intercept obtained from the first normal equation

β̂0 = Y − β̂1X1−·· ·− β̂KXK

Note: special case with K = 1� identical formulae as in SLRM!! (Prove it!!)
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2.4b Properties of the SRF.
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Properties of residuals and SRF (1)

β̂
β̂ �� β̂0

}
� Ŷ = X β̂ � û = Y − Ŷ

1. residuals add up to zero: ∑ ût = 0
Demo: directly from 1st.o.c.:

X ′û = 0 ⇒

⎡⎢⎢⎢⎢⎢⎣
∑T

1 ût

∑T
1 X1t ût

∑T
1 X2t ût

. . .

∑T
1 XKt ût

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0

0

0

. . .

0

⎤⎥⎥⎥⎥⎥⎦
�2. Ŷ = Y

3. the SRF passes thru vector (X1, . . .XK ,Y ): Y = β̂0 + β̂1X1 + · · ·+ β̂KXK

Note: These properties 1 thru 3 are fulfilled if the regression has an intercept; that
is, if X has a column of “ones”.
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Properties of residuals and SRF (2)

4. residuals orthogonal to explanatory v.: X ′û = 0
Demo: directly from 1st.o.c. (see 1) or, alternatively:

X ′û = X ′(Y −X β̂ ) = X ′Y −X ′X β̂

= X ′Y −X ′X(X ′X)−1︸ ︷︷ ︸
=IK+1

X ′Y = 0

�

5. residuals orthogonal to explained part of Y : Ŷ ′û = 0

Demo: Ŷ ′û = (X β̂ )′û = β̂ ′ X ′û︸︷︷︸
=0

= 0 �
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2.5b Goodness of Fit:
Coefficient of Determination (R2) & Estimation of the

Error Variance.
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Goodness of fit: R2 Revisited

Recall (same as before but now we’ll do it with vectors):

Y ′Y = (Ŷ ′ + û′)(Ŷ + û)

= Ŷ ′Ŷ + û′û+2Ŷ ′û

= Ŷ ′Ŷ + û′û (from prop 5)

Y ′Y−TY
2
= Ŷ ′Ŷ−TŶ

2
+ û′û (from prop 2)

y′y
(

↓
TSS)

= ŷ′ŷ
(

↓
ESS)

+ u′u
(

↓
RSS)

R2 =
ESS
TSS

= 1− RSS
TSS

0 ≤ R2 ≤ 1
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Goodness of fit: R2 Revisited (cont)

Note 1: R2 measures the proportion of the dependent variable variation explained by
the variation of (a linear combination of) the explanatory variables.
Note 2:

no intercept ⇒

⎧⎪⎨⎪⎩	 ∃1st row of 1st.o.c.�

{
∑ ût 	= 0,

Ŷ 	= Y ,

not validR2 (Remember!)
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Estimation of Var(ut)

σ2 = Var
(
ut

)
= E

(
u2

t

) � 1
T

T

∑
t=1

u2
t

but with residuals, they must satisfy K+1 linear relationships in X ′û = 0 so we loose
K+1 degrees of freedom:

σ̂2 =
1

T−K−1

T

∑
t=1

û2
t

Therefore we propose the following estimator:

σ̂ 2 =
RSS

T−K−1
which clearly is an unbiased estimator:

Demo:

E
(
σ̂2) =

E
(
RSS

)
(∗)

T−K−1
=

T−K−1
T−K−1

= σ2

� (∗ see textbook)
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2.6 Finite-sample Properties of the Least-Squares
Estimator.

The Gauss-Markov Theorem.

c©J Fernández (EA3-UPV/EHU), February 21, 2009 Introductory Econometrics - p. 78/192

Properties of the OLS Estimator (1)

The estimator β̂OLS = (X ′X)−1X ′Y has the following properties:

■ Linear: β̂OLS is a linear combination of disturbances:

β̂ = (X ′X)−1X ′(Xβ +u)

= (X ′X)−1X ′Xβ +(X ′X)−1X ′u

= β +(X ′X)−1X ′u

= β +Γ′u

■ Unbiased: Since E
(
u
)

= 0, β̂OLS is unbiased:

E
(
β̂

)
= E

(
β +Γ′u

)
= β +Γ′E

(
u
)

= β
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Properties of the OLS Estimator (2)

■ Variance: Recall:

Var
(
u
)

= σ2IT ,

β̂ = β +(X ′X)−1X ′u,

Var
(
β̂

)
= E

(
(β̂ −β )(β̂ −β )′

)
= E

(
(X ′X)−1X ′uu′X(X ′X)−1)

= (X ′X)−1X ′ E
(
uu′

)
X(X ′X)−1

= (X ′X)−1X ′ σ2IT X(X ′X)−1

= σ2(X ′X)−1X ′X(X ′X)−1

Var
(
β̂

)
= σ 2(X ′X)−1
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Properties of the OLS Estimator (2cont)

Var
(
β̂

)
=

⎡⎢⎢⎢⎣
Var

(
β̂0

)
Cov

(
β̂0, β̂1

)
. . . Cov

(
β̂0, β̂K

)
Cov

(
β̂1, β̂0

)
Var

(
β̂1

)
. . . Cov

(
β̂1, β̂K

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cov
(
β̂K , β̂0

)
Cov

(
β̂K , β̂1

)
. . . Var

(
β̂K

)
⎤⎥⎥⎥⎦

σ2(X ′X)−1 = σ2

⎡⎢⎢⎢⎢⎢⎣
a00 a00 a01 . . . a0K

a10 a11 a12 . . . a1K

a20 a21 a22 . . . a2K

. . . . . . . . . . . . . . . . . . . . . . . . .

aK0 aK1 aK2 . . . aKK

⎤⎥⎥⎥⎥⎥⎦
i.e. akk is the (k +1,k +1)-element of matrix (X ′X)−1:

Var
(
β̂k

)
= σ2akk

Cov
(
β̂k, β̂i

)
= σ2aki
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The Gauss-Markov Theorem

“Given the basic assumptions of GLRM, the OLS estimator is that of
minimum variance (best) among all the linear and unbiased estimators”

β̂OLS =BLUE = BestLinearUnbiasedEstimator

Demo:

Let β̃ be some other linear and unbiased estimator:

β̃ =D′Y = D′(Xβ +u) = D′Xβ +D′u

E
(
β̃

)
=D′Xβ +D′E

(
u
)

= D′Xβ = β ⇒ D′X = IK

then β̃ = β +D′u � β̃ −β = D′u
and its variance:

Var
(
β̃

)
= E

[
(β̃ −β )(β̃ −β )′

]
= E

(
D′uu′D

)
= D′ E

(
uu′

)
D = D′ σ2 IT D = σ2 D′D
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The Gauss-Markov Theorem (cont)

. . . The difference between both covariance matrices is a positive definite matrix:

Var
(
β̃

)−Var
(
β̂

)
= σ2 D′D−σ2 (X ′X)−1

= σ2 [
D′D− (X ′X)−1]

= σ2 [
D′D−D′X (X ′X)−1 X ′D

]
= σ2 D′ [IT −X (X ′X)−1 X ′]︸ ︷︷ ︸

M

D

= σ2 D′ (MM)D

= σ2 (D′M)(M′D) = D�′D�

> 0

I.e. in particular all individual variances will be bigger than their OLS counterpart.
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2.3c OLS: Useful expressions & Timeline.
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Useful expressions for SS

■

TSS = ∑(Yt −Y )2 = ∑Y 2
t −TY

2
= Y ′Y −TY

2

■

ESS = ∑(Ŷt − Ŷ )2 = ∑Ŷ 2
t −TŶ

2
= ∑Ŷ 2

t −TY
2
= Ŷ ′Ŷ −TY

2

= (X β̂ )′(X β̂ )−TY
2
= β̂ ′X ′X β̂︸ ︷︷ ︸

X ′Y

−TY
2
= β̂ ′X ′Y −TY

2

■

RSS = ∑ û2
t = û′û = ∑Y 2

t −∑Ŷ 2
t = Y ′Y − β̂ ′X ′Y
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Main expressions & Timeline

■ Y = Xβ +u

■ (X ′X)−1 X ′Y
■ β̂ = (X ′X)−1X ′Y

■ ESS = β̂ ′X ′Y −TY
2

(needs Y !)

■ TSS = Y ′Y −TY
2

■ RSS = Y ′Y − β̂ ′X ′Y (no Y !)

■ R2=
ESS
TSS

= 1− RSS
TSS

■ σ̂2 =
RSS

T−K−1

■
̂

Var
(
β̂

)
= σ̂2(X ′X)−1


