INTRODUCTORY ECONOMETRICS

Lesson $2 b$

Dr Javier Fernández

e:pfemaj@ehu.es

Dpt. of Econometrics \& Statistics

UPV-EHU

2.3b OLS in the GLRM.

Introducicory Econometrics -p. 6 . $1 / 192$

The Sample Regression Function (SRF)

- Objective of GLRM: To obtain estimator $\widehat{\beta}=\left(\widehat{\beta}_{0}, \widehat{\beta}_{1} \ldots, \widehat{\beta}_{K}\right)^{\prime}$ of unknown parameter vector in (2).
$\widehat{\beta} \rightsquigarrow$ estimated model, fit or SRF:

$$
\begin{aligned}
\widehat{Y}_{t} & =\widehat{\beta}_{0}+\widehat{\beta}_{1} X_{1 t}+\cdots+\widehat{\beta}_{K} X_{K t} \\
\widehat{Y} & =X \widehat{\beta}
\end{aligned}
$$

- Notes:
- Disturbances in PRF:

$$
\begin{aligned}
u_{t} & =Y_{t}-E\left(Y_{t}\right) \\
u & =Y_{t}-\beta_{0}-\beta_{1} X_{1 t}-\cdots-\beta_{K} X_{K t} \\
u & =Y-E(Y)
\end{aligned}=Y-X \beta
$$

- Residuals in SRF:

$$
\begin{aligned}
\widehat{u}_{t} & =Y_{t}-\widehat{Y}_{t}=Y_{t}-\widehat{\beta}_{0}-\widehat{\beta}_{1} X_{1 t}-\cdots-\widehat{\beta}_{K} X_{K t} \\
\widehat{u} & =Y-\widehat{Y}=Y-X \widehat{\beta}
\end{aligned}
$$

- Residuals are to the SRF what disturbances are to the PRF.

GLRM: the PRF

- Recall: model with K explanatory variables:

$$
\begin{align*}
Y_{t} & =\beta_{0}+\beta_{1} X_{1 t}+\cdots+\beta_{K} X_{K t}+u_{t} \\
Y & =X \beta+u \tag{2}
\end{align*}
$$

is called GLRM.

- Population Regression Function (PRF):
$E(u)=0 \rightsquigarrow$ systematic part or PRF:

$$
\begin{aligned}
& E\left(Y_{t}\right)=\beta_{0}+\beta_{1} X_{1 t}+\cdots+\beta_{K} X_{K t} \\
& E(Y)=X \beta
\end{aligned}
$$

- Interpretation of the coefficients:
- $\beta_{0}=E\left(Y_{t} \mid X_{1 t}=X_{2 t}=\cdots=X_{K t}=0\right)$: Expected value of Y_{t} when all explanatory variables are equal to zero.
- $\beta_{k}=\frac{\partial E\left(Y_{t}\right)}{\partial X_{k t}} \simeq \frac{\Delta E\left(Y_{t}\right)}{\Delta X_{k t}}, \quad k=1 \ldots K$: Increase in (expected) value Y_{t} when $X_{k} \uparrow$ one unit (c.p.).

O

Estimation: OLS

- apply Least-Squares fit to GLRM: $Y=X \beta+u$,
- either in observation form:

$$
\min _{\beta_{0} \ldots \beta_{K}} \sum_{t=1}^{T} u_{t}^{2} \text { where } u_{t}=Y_{t}-\beta_{0}-\beta_{1} X_{1 t}-\cdots-\beta_{K} X_{K t}
$$

- or in matrix form:
recall:

$$
u^{\prime}=\left(u_{1}, u_{2}, \ldots, u_{T}\right) \quad u=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\ldots \\
u_{T}
\end{array}\right)
$$

so $\left.u^{\prime} u=u_{1}^{2}+u_{2}^{2}+\cdots+u_{T}^{2}=\sum_{t=1}^{T} u_{t}^{2}\right]$

- that is

$$
\min _{\beta} u^{\prime} u \quad \text { where } \quad u=Y-X \beta
$$

Note: vector derivatives

- Let $u=u(\beta)$: derivs of $c u$ and $c u^{2}$ with respect to β :

$$
\frac{\partial}{\partial \beta}(c u)=c \frac{\partial u}{\partial \beta} \quad \text { and } \quad \frac{\partial}{\partial \beta} u^{2}=2 u \frac{\partial u}{\partial \beta}
$$

- With vectors and matrices this is quite similar:
- The derivative of the linear combination $\quad u^{\prime} c$

$$
\underset{(1 \times n)}{u^{\prime}} \underset{(n \times 1)}{c} \quad\left(=\sum_{i=1}^{n} c_{i} u_{i},\right. \text { i.e. scalar!!) }
$$

with respect to $\underset{(k \times 1)}{\beta}$ is: $\frac{\partial\left(u^{\prime} c\right)}{\partial \beta}=\frac{\partial u^{\prime}}{\partial \beta} c$

- The derivative of the sum of squares $u^{\prime} u$

$$
\underset{(1 \times n)}{u^{\prime}} \underset{(n \times 1)}{u} \quad\left(=\sum_{i=1}^{n} u_{i}^{2},\right. \text { i.e. scalar!!) }
$$

$$
\text { with respect to } \underset{(k \times 1)}{\beta} \text { is: } \frac{\partial\left(u^{\prime} u\right)}{\partial \beta}=2 \frac{\partial u^{\prime}}{\partial \beta} u
$$

Estimation: Normal equations \& LSE of β

Solving the 1st.o.c. we obtain the normal equations: $X^{\prime}(Y-X \widehat{\beta})=0 \Rightarrow$

$$
\begin{equation*}
X^{\prime} Y=X_{(K+1 \times 1)}^{\prime} X \underset{(K+1 \times K+1)}{(K+1 \times 1)} \underset{(K}{\boldsymbol{\beta}} \tag{3}
\end{equation*}
$$

Whence premultiplying by $\left(X^{\prime} X\right)^{-1}$ we obtain the OLS estimator:

$$
\widehat{\beta}_{\mathrm{OLS}}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

$$
\min _{\beta}\left(u^{\prime} u\right) \text { where } u=Y-X \beta
$$

First derivatives of $\operatorname{SS} u^{\prime} u$ with respect to β :

$$
\begin{aligned}
\frac{\partial u^{\prime} u}{\partial \beta} & =2 \frac{\partial u^{\prime}}{\partial \beta} u \\
& =2 \frac{\partial\left(Y^{\prime}-\beta^{\prime} X^{\prime}\right)}{\partial \beta} u \\
& =-2 X^{\prime} u
\end{aligned}
$$

in the minimum:

$$
\text { 1st.o.c.: } X^{\prime} \widehat{u}=0_{K+1}
$$

$(K+1 \times T)(T \times 1)$

Estimation: LSE of β (cont)

- where $X^{\prime} X$ is a $[K+1 \times K+1]$ matrix: $\quad[$ recall $X \& Y ? \longrightarrow]$

■

$$
\underset{(K+1 \times K+1)}{X^{\prime} X}=\left[\begin{array}{ccccc}
T & \sum X_{1 t} & \sum X_{2 t} & \ldots & \sum X_{K t} \\
\sum X_{1 t} & \sum X_{1 t}^{2} & \sum X_{1 t} X_{2 t} & \ldots & \sum X_{1 t} X_{K t} \\
\ldots & \ldots \ldots \ldots \\
\sum X_{K t} & \sum X_{K t} X_{1 t} & \sum X_{K t} X_{2 t} & \ldots & \sum X_{K t}^{2}
\end{array}\right]
$$

- and $X^{\prime} Y$ and $\widehat{\beta}$ are $[K+1 \times 1]$ vectors:

$$
\underset{(K+1 \times 1)}{X^{\prime} Y}=\left[\begin{array}{c}
\sum Y_{t} \\
\sum X_{1 t} Y_{t} \\
\cdots \\
\sum X_{K t} Y_{t}
\end{array}\right] \quad \underset{(K+1 \times 1)}{\widehat{\beta}}=\left[\begin{array}{c}
\widehat{\beta}_{0} \\
\widehat{\beta}_{1} \\
\ldots \\
\widehat{\beta}_{K}
\end{array}\right]
$$

An alternative way to obtain the OLS estimator is

$$
\hat{\beta}^{\star}{ }_{\circ S}=\left(x^{\prime} x\right)^{-1} x^{\prime} y
$$

for the model coefficients.
...together with the estimated intercept obtained from the first normal equation

$$
\widehat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}_{1} \cdots \cdots \widehat{\beta}_{K} \bar{X}_{K}
$$

Note: special case with $K=1 \rightsquigarrow$ identical formulae as in SLRM!! (Prove it!!)

Properties of residuals and SRF (1)

$$
\left.\widehat{\widehat{\beta}^{\star} \rightsquigarrow \widehat{\beta}_{0}}\right\} \npreceq \widehat{Y}=X \widehat{\beta} \rightsquigarrow \widehat{u}=Y-\widehat{Y}
$$

1. residuals add up to zero: $\sum \widehat{u}_{t}=0$

Demo: directly from 1st.o.c.:

$$
X^{\prime} \widehat{u}=0 \Rightarrow\left[\begin{array}{c}
\sum_{1}^{T} \widehat{u}_{t} \\
\sum_{1}^{T} X_{1 t} \widehat{u}_{t} \\
\sum_{1}^{T} X_{2 t} \widehat{u}_{t} \\
\cdots \\
\sum_{1}^{T} X_{K t} \widehat{u}_{t}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\cdots \\
0
\end{array}\right]
$$

2. $\overline{\widehat{Y}}=\bar{Y}$
3. the SRF passes thru vector $\left(\bar{X}_{1}, \ldots \bar{X}_{K}, \bar{Y}\right): \bar{Y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{X}_{1}+\cdots+\widehat{\beta}_{K} \bar{X}_{K}$

Note: These properties 1 thru 3 are fulfilled if the regression has an intercept; that is, if X has a column of "ones".

Goodness of fit: R^{2} Revisited

Recall (same as before but now we'll do it with vectors):

2.5b Goodness of Fit:

Coefficient of Determination $\left(\mathrm{R}^{2}\right)$ \& Estimation of the Error Variance.

Goodness of fit: R^{2} Revisited (cont)

Note 1: R^{2} measures the proportion of the dependent variable variation explained by the variation of (a linear combination of) the explanatory variables.
Note 2:

$$
\text { no intercept } \Rightarrow\left\{\begin{array}{l}
\nexists 1 \text { st row of 1st.o.c. } \rightsquigarrow\left\{\begin{array}{l}
\sum \widehat{u}_{t} \neq 0, \\
\widehat{Y} \neq \bar{Y},
\end{array}\right. \\
\text { not valid } R^{2} \text { (Remember!) }
\end{array}\right.
$$

$$
\begin{aligned}
Y^{\prime} Y & =\left(\widehat{Y}^{\prime}+\widehat{u}^{\prime}\right)(\widehat{Y}+\widehat{u}) \\
& =\widehat{Y}^{\prime} \widehat{Y}+\widehat{u}^{\prime} \widehat{u}+2 \widehat{Y}^{\prime} \widehat{u} \\
& =\widehat{Y}^{\prime} \widehat{Y}+\widehat{u}^{\widehat{u}} \quad \text { (from prop 5) } \\
Y^{\prime} Y-T \bar{Y}^{2} & =\widehat{Y}^{\prime} \widehat{Y}-T \widehat{Y}^{2}+\widehat{u}^{\prime} \widehat{u} \quad \text { (from prop 2) }
\end{aligned}
$$

$$
\begin{gathered}
y^{\prime} y=\underset{y}{y^{\prime} \widehat{y}}+u^{\prime} u \\
(T S S) \\
(E S S) \\
(R S S)
\end{gathered}
$$

$$
\begin{gathered}
R^{2}=\frac{E S S}{T S S}=1-\frac{R S S}{T S S} \\
0 \leq R^{2} \leq 1
\end{gathered}
$$

Estimation of $\operatorname{Var}\left(u_{t}\right)$

$$
\sigma^{2}=\operatorname{Var}\left(u_{t}\right)=\mathrm{E}\left(u_{t}^{2}\right) \simeq \frac{1}{T} \sum_{t=1}^{T} u_{t}^{2}
$$

but with residuals, they must satisfy $K+1$ linear relationships in $X^{\prime} \widehat{u}=0$ so we loose $K+1$ degrees of freedom:

$$
\widehat{\sigma}^{2}=\frac{1}{T-K-1} \sum_{t=1}^{T} \widehat{u}_{t}^{2}
$$

Therefore we propose the following estimator:

$$
\widehat{\sigma}^{2}=\frac{\mathrm{RSS}}{T-K-1}
$$

which clearly is an unbiased estimator:
Demo:

$$
\mathrm{E}\left(\hat{\sigma}^{2}\right)=\frac{\mathrm{E}(\mathrm{RSS})\left({ }^{*}\right)}{T-K-1}=\frac{T-K-1}{T-K-1}=\sigma^{2}
$$

Properties of the OLS Estimator (1)

2.6 Finite-sample Properties of the Least-Squares

Estimator.

The Gauss-Markov Theorem.

Properties of the OLS Estimator (2)

- Variance: Recall:

$$
\begin{gathered}
\operatorname{Var}(u)=\sigma^{2} I_{T}, \\
\widehat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u, \\
\begin{aligned}
& \operatorname{Var}(\widehat{\beta})=\mathrm{E}\left((\widehat{\beta}-\beta)(\widehat{\beta}-\beta)^{\prime}\right) \\
&=\mathrm{E}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X\left(X^{\prime} X\right)^{-1}\right) \\
&=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathrm{E}\left(u u^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
&=\left(X^{\prime} X\right)^{-1} X^{\prime} \sigma^{2} I_{T} X\left(X^{\prime} X\right)^{-1} \\
&= \sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1}
\end{aligned} \\
\\
\operatorname{Var}(\widehat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{gathered}
$$

The estimator $\widehat{\beta}_{\mathrm{OLS}}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$ has the following properties:

- Linear: $\widehat{\beta}_{\text {OLS }}$ is a linear combination of disturbances:

$$
\begin{aligned}
\widehat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u) \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} X \beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =\beta+\Gamma^{\prime} u
\end{aligned}
$$

- Unbiased: Since $\mathrm{E}(u)=0, \widehat{\beta}_{\text {OLS }}$ is unbiased:

$$
\begin{aligned}
\mathrm{E}(\widehat{\beta}) & =\mathrm{E}\left(\beta+\Gamma^{\prime} u\right) \\
& =\beta+\Gamma^{\prime} \mathrm{E}(u) \\
& =\beta
\end{aligned}
$$

Properties of the OLS Estimator (2cont)

$$
\begin{aligned}
& \operatorname{Var}(\widehat{\beta})= {\left[\begin{array}{cccc}
\operatorname{Var}\left(\widehat{\beta}_{0}\right) & \operatorname{Cov}\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right) & \ldots & \operatorname{Cov}\left(\widehat{\beta}_{0}, \widehat{\beta}_{K}\right) \\
\operatorname{Cov}\left(\widehat{\beta}_{1}, \widehat{\beta}_{0}\right) & \operatorname{Var}\left(\widehat{\beta}_{1}\right) & \ldots & \operatorname{Cov}\left(\widehat{\beta}_{1}, \widehat{\beta}_{K}\right) \\
\ldots . \\
\operatorname{Cov}\left(\widehat{\beta}_{K}, \widehat{\beta}_{0}\right) & \operatorname{Cov}\left(\widehat{\beta}_{K}, \widehat{\beta}_{1}\right) & \ldots & \operatorname{Var}\left(\widehat{\beta}_{K}\right)
\end{array}\right] } \\
& \sigma^{2}\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left[\begin{array}{ccccc}
a_{00} & a_{00} & a_{01} & \ldots & a_{0 K} \\
a_{10} & a_{11} & a_{12} & \ldots & a_{1 K} \\
a_{20} & a_{21} & a_{22} & \ldots & a_{2 K} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \\
a_{K 0} & a_{K 1} & a_{K 2} & \ldots & a_{K K}
\end{array}\right]
\end{aligned}
$$

i.e. $a_{k k}$ is the $(k+1, k+1)$-element of matrix $\left(X^{\prime} X\right)^{-1}$:

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{\beta}_{k}\right) & =\sigma^{2} a_{k k} \\
\operatorname{Cov}\left(\widehat{\beta}_{k}, \widehat{\beta}_{i}\right) & =\sigma^{2} a_{k i}
\end{aligned}
$$

"Given the basic assumptions of GLRM, the OLS estimator is that of minimum variance (best) among all the linear and unbiased estimators"

$$
\widehat{\beta}_{\text {OLS }}=B L U E=B_{\text {est }} L_{\text {inear }} U_{\text {nbiased }} E_{\text {stimator }}
$$

Demo:
Let $\widetilde{\beta}$ be some other linear and unbiased estimator:

$$
\begin{gathered}
\widetilde{\beta}=D^{\prime} Y=D^{\prime}(X \beta+u)=D^{\prime} X \beta+D^{\prime} u \\
\mathrm{E}(\widetilde{\beta})=D^{\prime} X \beta+D^{\prime} \mathrm{E}(u)=D^{\prime} X \beta=\beta \Rightarrow D^{\prime} X=I_{K}
\end{gathered}
$$

then $\widetilde{\beta}=\beta+D^{\prime} u \quad \rightsquigarrow \widetilde{\beta}-\beta=D^{\prime} u$
and its variance:

$$
\begin{aligned}
\operatorname{Var}(\widetilde{\beta}) & =E\left[(\widetilde{\beta}-\beta)(\widetilde{\beta}-\beta)^{\prime}\right]=\mathrm{E}\left(D^{\prime} u u^{\prime} D\right) \\
& =D^{\prime} \mathrm{E}\left(u u^{\prime}\right) D=D^{\prime} \sigma^{2} I_{T} D=\sigma^{2} D^{\prime} D
\end{aligned}
$$

Useful expressions for SS

2.3c OLS: Useful expressions \& Timeline.

Main expressions \& Timeline

- $Y=X \beta+u$
n $\left(X^{\prime} X\right)^{-1} \quad X^{\prime} Y$
- $B=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$
- $E S S=\left(\widehat{\beta}^{\prime} X^{\prime} Y-T \bar{Y}^{2}\right.$
(needs \bar{Y} !)
- $T S S=Y^{\prime} Y-T \bar{Y}^{2}$
- $R S S=Y^{\prime} Y-\widehat{\beta}^{\prime} X^{\prime} Y$ (no \bar{Y} !)
- $R^{2}=\frac{E S S}{\tilde{T} S S}=1-\frac{R S S}{T S S}$
- $\widehat{\sigma}^{2}=\frac{R S S}{T-K-1}$
- $\widehat{\operatorname{Var}(\widehat{\beta})}=\widehat{\sigma}^{2}\left(X^{\prime} X\right)^{-1}$

